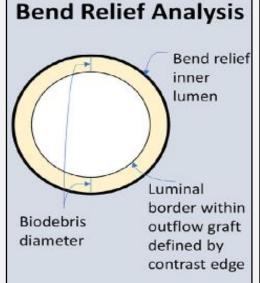
UNIVERSITY OF MICIHIGAN, ANN ARBOR, MI, USA

Trankle C et al. Left Ventricular Assist Device Outflow Graft Compression: Incidence, Clinical Associations and Potential Etiologies. Journal of Cardiac Failure

STUDY HIGHLIGHTS

Hypothesis: Biodebris in LVAD bend relief → external outflow graft compression


Design:

- Retrospective, single center
- Inc: LVAD + chest CTA (09-17)
- Measured degree of biodebris
- Different imaging criteria for HM2, HM3, HVAD

<u>Results</u>: n = 110

- Significant biodebris + graft narrowing
 - 15/93 HeartMate devices
 - •0/17 HVAD
- Outflow graft kinking
 - 4/93 HeartMate device
 - •0/17 HVAD

CENTRAL FIGURE

HeartMate II:

- Bend relief diameter 21 mm
- Aggregate biodebris diameter
 7 mm was further analyzed

HeartMate 3:

- Bend relief diameter 18 mm
- Aggregate biodebris diameter
 >4 mm was further analyzed

Biodebris at borders of outflow graft lumen Biodebris maximal diameter Biodebris at borders of outflow graft lumen Luminal border within outflow graft defined by contrast edge

HeartMate models:

 Aggregate biodebris diameter >10 mm or any outflow graft luminal narrowing to ≤14 mm was further analyzed

HeartWare model:

- · Strain relief (no bend relief)
- Aggregate biodebris diameter >4 mm or any outflow graft luminal narrowing to ≤10 mm was further analyzed

REVIEWER'S COMMENTS

Biodebris build up = under-recognized.
?? implications for HeartMate devices
(HVAD: no fully encasing bend relief)

Limitations:

- Mostly HM2 (n=89)
- 5 CTAs excluded for poor quality → unclear criteria
- Selection bias; why did patients have CTAs?
- Different LVAD device designs → difficult to compare LVAD types

MARTY TAM, M.D.

UNIVERSITY OF MICIHIGAN, ANN ARBOR, MI, USA

TON VAN-KHUE, M.D. Ph.D.
EDITOR
ISHLT.ORG

Frea S et al. Noninvasive Assessment of Hemodynamic Status in HeartWare Left Ventricular Assist Device Patients:

Validation of an Echocardiographic Approach. JACC: Cardiovascular Imaging

STUDY HIGHLIGHTS

Objective:

Validate echo-based HVAD protocol for estimating hemodynamic status

Methods:

- 35 HVAD patients (2014-2017)
- Correlated echo estimates with RHC

Results:

- Strong correlations between estimated and invasive pressures
 - \checkmark RA (r = 0.839); LA (r = 0.889)
- Accurate for finding high pressures
 ✓ RA (AUC = 0.94); LA (AUC = 0.91)
- High RAP correlated with:
 - √ High LAP
 - ✓ Death/hospitalization at 180d
- Hemodynamic profiles correlate with clinical risk

CENTRAL FIGURE: HVAD protocol

FIGURE 1 Doppler Echocardiographic Protocol for Noninvasive Assessment of Right Atrial Pressure and Wedge Pressure

Α	eRAP = (eRAP _{IVC} + eRAP _{HVFF} + eRAP _{right E/e'})/3* * or mean of available values				
	eRAP _{IVC}	eRAP _{HVFF}	eRAP _{right E/e'}		
20 mm Hg	IVC > 21 mm without collapse	V _S < V _D and HVFF < 45% or Vs reverse	> 8		
15 mm Hg	IVC > 21 mm with < 50% collapse	V _S < V _D and HVFF < 55%	> 6		
10 mm Hg	IVC > 21 mm with > 50% collapse OR IVC ≤ 21 mm with < 50% collapse	V _S < V _D and HVFF < 55%	> 4		
5 mm Hg	IVC ≤ 21 mm with ≥ 50% collapse	$V_S > V_D$	≤ 4		

B eLAP ₂ = (eLAP _{E/A} + eLAP _{MDI} + eLAP _{septal E/e'} + eLAP _{MR})/4* * or mean of available values					
	eLAP _{E/A}	eLAP _{MDI}	eLAP _{septal E/e'}	eLAP _{MR}	
20 mm Hg	Restrictive (DT < 125 ms)	< 1.5	≥ 20	4+/4+	
15 mm Hg	Restrictive (DT 125-160 ms)	< 2	≥ 15	3+/4+	
10 mm Hg	Pseudonormal	> 2	≥ 8	2+/4+	
5 mm Hg	Impaired relaxation	> 3	< 8	1+/4+	

<u>Selected terms</u>: eRAP, estimated right atrial pressure; HVFF, hepatic venous systolic filling fraction; eLAP, estimated left atrial pressure; MDI, mitral deceleration index

REVIEWER'S COMMENTS

First prospective study of noninvasive hemodynamic evaluation in HVADs

LVAD echo imaging quality often limited → use of Doppler techniques may be of value

Normal RA and LA filling pressures linked with better outcomes

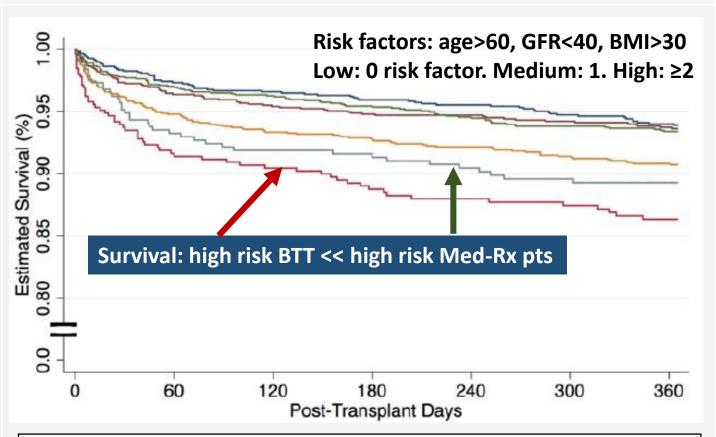
Limitations:

- Single center
- Small derivation cohort, n=5
- Small validation cohort, n=35
- Generalizability limited (experience in image acquisition variable)

RIGSHOSPITALET, DENMARK

Truby LK et al. Impact of Bridge to Transplantation With Continuous-Flow Left Ventricular Assist Devices on Post-Transplantation Mortality. Circulation.

STUDY HIGHLIGHTS


Background:

- 个 # of BTT-LVAD to OHT
- BTT-LVAD may assoc. w/ ↓post-OHT outcomes (small studies)
- No difference in listing status between BTT-LVAD vs. Med-Rx patients

Design:

- UNOS database query
- Compare outcomes of BTT-LVAD vs. Med-Rx patients
- Propensity-matching analysis

CENTRAL FIGURE

Outcome: BTT-LVAD $\approx \uparrow \uparrow 1$ -yr post-OHT mortality (90.5% vs. 92.8%, log-rank p<0.0001). Most deaths \approx CV cause (PGD)

REVIEWER'S COMMENTS

Values of study:

- -Large database
- -Propensity matching
- -Raised question:should BTT-LVAD pts
- be listed differently vs. Med-Rx pts

Main limitations:

- -Retrospective
- -Registry based ->Inconsistent data
- collection (PGD not
- universally defined)
- -No validation cohort

Li S et al. Accuracy of Doppler Blood Pressure Measurement in Continuous-Flow Left Ventricular Assist Device Patients.

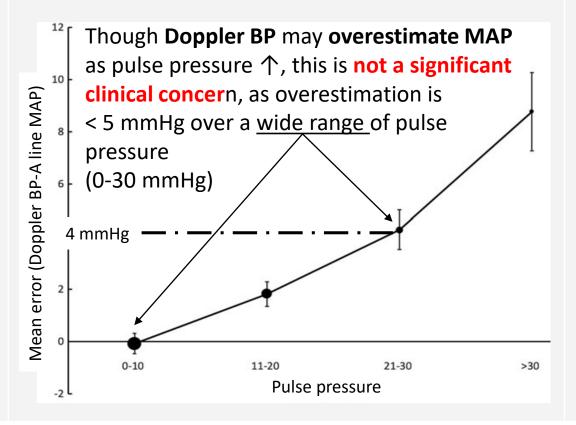
ESC Heart Failure.

STUDY HIGHLIGHTS

<u>Purpose:</u> BP measured by Doppler vs. A-line (gold standard).

Why: BP control $\approx \downarrow$ CVA risk. Measure BP \approx challenging in CF-LVAD.

<u>Design:</u> N=154; HM2=994 vs. HVAD=939, combined=1933 observations)


Results: A-line MAP vs. simultaneously measured Doppler opening pressure

- r = 0.741, p < 0.0001
- Mean Error = 2.4 [7.5]
- Median error = 1 [-2,5]

Correlation: HM2 better than HVAD

CENTRAL FIGURE

Doppler BP correlates better w/ A-line MAP (87% between ±10mmHg) than A-line systolic BP (64% between ±10mmHg)

REVIEWER'S COMMENTS

Largest study on this subject to date.

Doppler opening pressure may be the **most accurate method** for non-invasive BP measurement in CF-LVAD.

Future studies needed to show consistency in clinical practice.

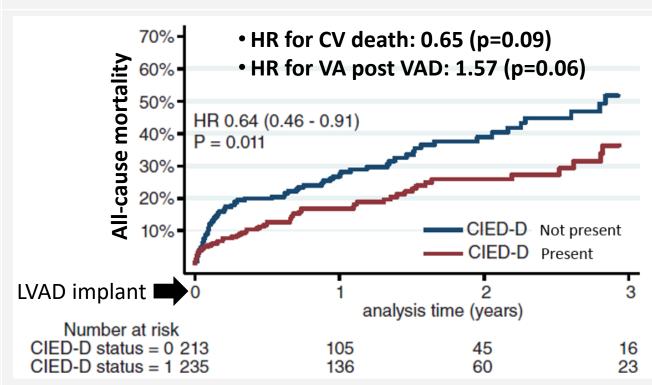
Extrapolation limited due to:

- Single center design
- Selection bias
- No HM3 included.

RIGSHOSPITALET, DENMARK

Cikes M et al. Cardiac Implantable Electronic Devices with a Defibrillator Component (CEID-D) and All-Cause Mortality in Left Ventricular Assist Device Carriers: Results from the PCHF-VAD Registry. European Journal of Heart Failure.

STUDY HIGHLIGHTS


<u>Purpose:</u> compare outcomes of patients with & without ICD or CRT-D (CIED-D).

<u>Why:</u> prior studies conflicting, some suggested no mortality benefits w/ ICD in CF-LVAD patients.

Design: Time-varying analysis using data from multicenter PCHF-VAD registry: N=448 (CIED-D=208 vs. NO-CIED-D=240).

Results: Risk reduction of allcause mortality w/ CIED-D: 39% (Propensity score adjusted).

CENTRAL FIGURE

Other risk factors for all-cause death: \(\triangle\) age, LVAD implant as redo surgery, \(\triangle\) burden of ventricular arrythmias (VA), pre-VAD vasopressor use.

REVIEWER'S COMMENTS

Extensive adjustments for potential confounders showing mortality benefit of CIED-D post LVAD.

Prospective randomized study needed.

Limitations:

- -Retrospective registrybased study
- -Lack of data on arrhythmias in controls (no-CIED-D)
- -Disparities in CIED-D use in LVADs between Europe and USA limit extrapolation
- -Association ≠ causality