What’s New in MCS Literature Review

April 2015

Jennifer Conway, MD
Stollery Children’s Hospital
Edmonton, AB, Canada

Annals of Thoracic Surgery

1) Biventricular Berlin Heart EXCOR Pediatric Use Across the United States.

2) Bridge to long-term mechanical circulatory support with a left ventricular assist device: novel use of transcatheter aortic valve replacement.

Journal of American College of Cardiology - Heart Failure

1) The Heartmate Risk Score Predicts Morbidity and Mortality in Unselected Left Ventricular Assist Device Recipients and Risk Stratifies INTERMACS Class 1 Patients.

2) Left Atrial Decompression Pump for Severe Heart Failure With Preserved Ejection Fraction: Theoretical and Clinical Considerations.

3) Left ventricular assist devices ramp studies: truth or consequences?
Starling RC. JACC Heart Fail. 2015 Apr;3(4):300-2

4) Gastrointestinal Bleeding in Recipients of the HeartWare Ventricular Assist System.

5) Gastrointestinal Bleeding in Recipients of the HeartWare Ventricular Assist System.

6) Echocardiographic Ramp Test for Continuous-Flow Left Ventricular Assist Devices: Do Loading Conditions Matter?
7) Gold standard in anticoagulation assessment of left ventricular assist device patients?: how about bronze.

European Heart Journal
No VAD related articles in April

Journal of Cardiac Surgery
No VAD related articles in April

Journal of Heart and Lung Transplant

1) **Systolic blood pressure on discharge after left ventricular assist device insertion is associated with subsequent stroke.**

This is a single center study examining the relationship between blood pressure prior to discharge and risk of stroke. There were 275 patients who underwent LVAD implantation between 2005 and 2013 who were analyzed. The study dichotomized patients into 2 groups, those with a median systolic blood pressure (SBP) by Dinamap above vs. below 100mmHg from readings taken during the 48hrs prior to discharge. Patient characteristics were similar with respect to other potential risk factors for stroke (hypertension, vascular disease, smoking, BMI, a.fib, history of stroke).

After a median of 16 months of follow-up, the stroke risk was significantly increased in those with a median SBP above 100 mmHg, 16% vs. 7%; with a hazard ratio of 2.5. In addition, when the data was further analyzed adjusting for age, diabetes, and prior history of stroke, higher SBP remained a significant risk factor.

The major limitation of this study lies in the fact that this is a retrospective study with automatic blood pressure measurements. These measurements might actually reflect a mean blood pressure and therefore could represent falsely low systolic numbers. Therefore appropriate blood pressure targets cannot be extracted from this data. Regardless, this paper adds to the growing concern that higher blood pressures in patients with a continuous flow VAD may contribute to an increased risk of stroke.

2) **A novel pediatric treatment intensity score: development and feasibility in heart failure patients with ventricular assist devices.**

This study evaluated a novel pediatric treatment intensity score (TIS) designed to quantify disease burden (morbidity) in children who are inpatients with severe heart failure who require VAD support. Through expert consensus a scale was developed that addressed 5 domains of functioning: nutrition, respiratory support, activity level, cardiovascular medications, and care environment. The TIS was than used to characterize a retrospective cohort of 39 patients with 42 implants.

Scores were calculated for the 3 days prior to implant, on implant day and than days 3,7,14,21,31,60 and 90 post implant. Trends in the scoring system reflected an improvement over time in patients following implantation, corresponding with the overall clinical impression. This scoring system was may represent a useful tool for objectively assessing other heart failure treatment strategies in the pediatric population.

3) Risk models for mechanical circulatory support in children.
 Kirklin JK. J Heart Lung Transplant. 2015 Apr;34(4):499-500
4) Time to cool off on a hot topic? Let's not forget about evidence when discussing heat-induced pump thrombogenesis.
 de Biasi AR, Manning KB, Salemi A. J Heart Lung Transplant. 2015 Apr;34(4):623-4.

5) Blood pressure and stroke risk in left ventricular assist devices.
 Willey JZ. J Heart Lung Transplant. 2015 Apr;34(4):497-8

6) Left ventricular assist device thrombosis in the setting of left ventricular recovery.

7) Ventricular assist device thrombosis: A wide spectrum of clinical presentation.

8) Effect of exercise and pump speed modulation on invasive hemodynamics in patients with centrifugal continuous-flow left ventricular assist devices.

9) Marital status and survival in left ventricular assist device patient populations.

10) Histologic analysis of clots in explanted axial continuous-flow left ventricular assist devices.

11) Exercise in heart failure patients supported with a left ventricular assist device.
 Jung MH, Gustafsson F. J Heart Lung Transplant. 2015 Apr;34(4):489-96

12) Volume 34, Issue 4 Supplement
 Refer to issue for VAD related abstracts presented at ISHLT 2015

Circulation
No VAD related articles in April